I've Collected Blood, Now What?

Incorporating Geroscience into Clinical Research

JEREMY D. WALSTON, MD RAYMOND AND ANNA LUBLIN PROFESSOR OF MEDICINE JOHNS HOPKINS UNIVERSITY WWW.FRAILTYSCIENCE.ORG

Overview

Modeling Physical Frailty and Resiliency
Feasible Measures of Physiology and Biology
Inflammatory/Immune System Measures
Suggested Guidelines

Scientific/Gerontological Models

Physical Frailty Physical Resiliency Chronic Inflammation

Complex Pathway to Physical Frailty

Walston J, 2016

Clinically Apparent vs. Invisible Frailty Measures

Biomarkers from Stimulus-Response Experiments in Physical Resiliency

► ACTH Stimulation

Diurnal Salivary Cortisol Profile

➢Oral Glucose Tolerance Test

≻Holter Monitoring

> Dynamic ex-vivo response of immune cells

➢Orthostatic Blood Pressure

CI Definition

<u>Chronic inflammation (CI)</u> is a heterogeneous, low grade activation of the innate immune system that remains 'on' after activation

<u>Acute inflammation</u> is high grade activation of innate immune system that targets specific acute injury or illness and shuts down after acute condition resolves

Consequences of CI in Older Adults

Worsening Chronic Disease States Functional decline

- Sarcopenia, fibrotic tissue replacement
- Satellite Cell Decline

Cognitive decline

Neurodegeneration and MCI

Physical Frailty

Poor response to vaccines

Altered Stress Response Systems and Energy Metabolism

Intrinsic or Age-Related Etiologies (Geroscience)

Necroptosis-related Cellular Debris (immune modulating) Senescent Cells (fat, fibroblasts)

Altered Immune System (senescent, clonal cells)

Altered Gut Wall and Microbiome

Gene Variation (contributory or preventative)

Mitochondrial damage and oxidative stress

Intrinsic (Ageing)Alterations in the Innate Immune System

Bandaranayake and Shaw Clin Geriatr Med 32 (2016) 415–432

Best Serum Markers of CI to Date

- TNF-alpha R1** (*validated, less variable, biologically relevant)
- 2. IL-6 ** (*validated, quite variable with illness)
- 3. <u>CRP (utilized in clinical practice, distal signal,</u> more vascular)

** cytokines have good evidence of consequential biological activity

Cytokines and Mortality over 10 Years in CHS

Parameter	Chi-Square	Pr > ChiSq	Hazard Ratio
logCRP	72	<.0001	1.22
logIL6	287	<.0001	1.44
logTNFRI	274	<.0001	1.48
logIL18	24	<.0001	1.12
logIL1RA	56	<.0001	1.19
age	772	<.0001	1.80
WSS	281	<.0001	1.47
PCS	237	<.0001	1.43
IIS	433	<.0001	1.64

Varadhan R et al, JGMS, 2014

Chronic Inflammation and Future MCI

Gross A. et al, 2019, Frontiers in Neurology

IL-6 and Multisystem Dysregulation

Rhesus monkeys injected with low dose IL-6 developed multisystem changes

- 10% lean body mass decline by DEXA within 30 days
- Anemia & osteopenia
- Decreased albumin & cholesterol
- Increased CRP, alkaline phosphatase

<u>Chronic</u> TNF-Alpha R1

- Contributes to necroptosis signaling and DAMP release
- DAMP drives further inflammatory pathway activation
- Accelerates cell loss in frailty

CI and Neurotoxic Tryptophan Metabolites: Sarcopenia and Frailty?

Summary

- Ouse Modeling to Develop Clinical Connections to Aging Phenotypes and Measurement Priorities
- •Consider Physiology and Biology Measures
- OThink Feasibility and Tight Focus for Present Projects
- Absolutely Store Samples for Broader Future
 Opportunities
- •Think Intervention Development!! (feasible diagnostics, treatment monitoring, in addition to clinical measures)

Acknowledgments

* OLDER AMERICANS * INDEPENDENCE CENTER

Claude D. Pepper Older Americans Independence Center National Institute on Aging, P30-AG021334

Characterizing Resiliencies to Physical Stressors in Older Adults: A Dynamical Physiological Systems Approach, UH3AG056933

Acknowledgements

