EXPOSOME as a Stressor in the Study of Resilience

Clinician-Scientists Transdisciplinary Aging Research (Clin-STAR) Annual Meeting, November 2022

Amy Kind, MD, PhD
University of Wisconsin School of Medicine and Public Health
FUNDING DISCLOSURES

NIH/National Institute on Aging

NIH/National Institute on Minority Health and Health Disparities

Alzheimer's Association
EXPOSOME

The measure of all the exposures of an individual in a lifetime and how those exposures relate to health*

Exposome

- Factors external to the biological individual
- Diverse factors ranging from microbiome to structural inequity
NIH HEALTH DISPARITIES FRAMEWORK

Levels of Analyses

Environmental
- Geographical and Political Factors
 - Structural Bias
 - Immigration/Documentation
 - Criminalization
 - Residential Segregation
 - Urban/Rural
 - Toxins/Exposures

Sociocultural
- Cultural Factors
 - Values
 - Prejudice
 - Noms
 - Traditions
 - Religion
 - Collective Responses

Behavioral
- Coping Factors
 - Active Coping
 - Problem Solving
 - Stress Management
 - Cognitive Reframing
 - Emotional Regulation

Biological
- Physiological Indicators
 - Co-Morbidities
 - Cardiovascular
 - Sympathetic Nervous System
 - HPA Axis
 - Inflammation

Socioeconomic Factors
- Education
- Income/Wealth
- Occupation
- Limited English

Social Factors
- Institutional Racism
- Family Stress
- Financial Stress
- Occupational Stress
- Residential Stress
- Social Mobility
- Social Network

Psychosocial Risk/Resilience
- Social Support
- Discrimination
- Pessimism
- Optimism
- Control

Genetic Stability
- Telomere Abolition
- Epigenetic Alteration
- Loss of Proteostasis

Health Care
- Access
- Insurance
- Quality
- Literacy
- Numeracy

Psychological Factors
- Smoking
- Anger/Violence
- Alcohol/Drug
- Nutrition
- Physical Activity

Cellular Function and Communication
- Deregulated Nutrient Sensing
- Mitochondrial Dysfunction
- Cellular Senescence
- Cellular Stress Response
- Stem Cell Exhaustion
- Intercellular Communication

Lifecourse Perspective

Hill, Perez-Stable, Anderson, and Bernard, Ethnicity and Disease, 2015
NIA HEALTH DISPARITIES FRAMEWORK

- ENVIRONMENTAL
- SOCIOCULTURAL
- BEHAVIORAL
- BIOLOGICAL

LIFE COURSE

Hill, Perez-Stable, Anderson and Bernard, Ethnicity and Disease, 2015
EXAMINING THE EXPOSOME

Quantifying Exposures

Linking Exposome to Biology

Research to Action
EXAMINING THE EXPOSOME

Quantifying Exposures
EXAMPLE: QUANTIFYING EXPOSOME USING THE AREA DEPRIVATION INDEX (ADI)*

• ADI construction
 • 17 measures of social determinants of health across small, population sensitive areas
 • Ranked score
 • Time concordant

• Current ADI measures for full US available through the Neighborhood Atlas®*

• Harmonizable metrics available internationally

• Disparities-aligned US exposome metric

*Kind and Buckingham, New England Journal of Medicine, 2018
The HOLC maps are part of the records of the FHLBB (RG195) at the National Archives II Archived 2016-10-11 at the Wayback Machine.
RESIDING IN A HIGH ADI NEIGHBORHOOD IS LINKED TO:

- Epigenetic age acceleration (Lawrence et al, JAMA-Open, 2020)
- Rehospitalization and Cost (multiple)
- Later diagnoses and less comprehensive diagnostic evaluation (Tsoy et al, JAMA-Neurology, 2021; multiple)
- Increased risk of post-surgical complications (Arias et al, JAGS, 2021)
- Decreased active-life expectancy (Gill et al, JAMA-IM, 2021)
- Many other factors
EXAMINING THE EXPOSOME

Linking Exposome to Biology
• Link exposures to biological process

• Expand the potential of existing programs in completely new ways
• N=453 decedents who donated their brain to Wisconsin or University California San Diego ADRC brain banks, 1993-2016

• No social factor characterization available

• Residential address at death geocoded, linked to neighborhood disadvantage by ADI

Source: www.Pixabay.com—All images are released free of copyrights under Creative Commons CC0

Powell et al, JAMA-Open, 2020
Living in the most disadvantaged neighborhood decile was associated with increased odds of AD neuropathology
• Examine the impact, mediators and moderators of life-course exposome on AD-specific pathologic features, vascular burden and cognitive decline

• Over 9,000 ADRC brain bank decedents

• 7,875 ADRC clinical core participants

• 22 Alzheimer’s Disease Research Centers
EXAMINING THE EXPOSOME

Research to Action
DATA DEMOCRATIZATION IS KEY TO ACTION

Making scientific research accessible to all levels of an inquiring society, amateur or professional

Woelfle et al, Nature Chemistry 2011; Boulware et al, 2020; Kind et al, 2018
• Data democratization and open science tool for the ADI
• Customized mapping; Free, open to all
• Data downloaded tens of thousands of times by research, governmental, community, and industry groups.

*Kind NEJM 2018
Ethical Allocation of COVID Therapies

- Example: Pennsylvania

US Centers for Medicare and Medicaid Services (CMS)

- 2023 ACO Realizing Equity, Access, and Community Health (REACH) Model uses ADI to adjust payments

A health system that achieves equitable outcomes through high quality, affordable, person-centered care.
Health Equity Benchmark Adjustment

ACO REACH includes a benchmark adjustment that increases benchmarks for ACOs serving higher proportions of underserved beneficiaries.

CMS will stratify all beneficiaries aligned to ACO REACH using a composite measure of underservice that incorporates a combination of:

- **Area Deprivation Index**: Area-level measure of local socioeconomic factors correlated with medical disparities and underservice.
- **Dual Medicaid Status**: Beneficiary-level measure of economic challenges affecting individuals’ ability to access high quality care.
- 25 Point Adjustment for Full or Partial Dual Eligibility

<table>
<thead>
<tr>
<th>Percentile Range</th>
<th>Adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st – 50th Percentile</td>
<td>-$6 PBPM Adjustment</td>
</tr>
<tr>
<td>51st – 90th Percentile</td>
<td>No Adjustment</td>
</tr>
<tr>
<td>91st – 100th Percentile</td>
<td>+$30 PBPM Adjustment</td>
</tr>
</tbody>
</table>

1. CMS may explore other variables to include in this assessment and will notify applicants prior to the start of PY2023 if any other variables are included.

*2022 ACO Realizing Equity, Access, and Community Health (REACH) Model [https://innovation.cms.gov/media/document/aco-reach-fin-meth-webinar-slides]
CMS ACO-REACH RESOURCE TARGETING: SIMPLIFIED

Low ADI = $

High ADI = $
Gap: Exposome Measurement
- Promote development and availability of rigorous, harmonizable life-course aligned exposome measures

Gap: Standardizing Social-Biological Phenotyping
- Develop processes and infrastructure to promote more routine inclusion of exposome in traditional biological-focused assessments
- Increase scientific capacity to perform this work - multi-disciplinary teams

Gap: Health Resilience in Adverse Exposome
- Identifying factors, interventions that promote health in adverse exposome

Many Other Gaps: Exposome as an Emerging Field
<table>
<thead>
<tr>
<th>ADRC</th>
<th>Participating Components</th>
<th>Site PI(s)</th>
<th>Site Co-I(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Wisconsin</td>
<td>BB/CC</td>
<td>Amy Kind, Barbara Bendlin (MPI)</td>
<td>Vikas Singh, Menggang Yu</td>
</tr>
<tr>
<td>Banner Alzheimer’s Institute</td>
<td>BB/CC</td>
<td>Eric Reiman, Thomas Beach</td>
<td>Kewei Chen</td>
</tr>
<tr>
<td>Boston University</td>
<td>BB/CC</td>
<td>Maureen K. O’Connor</td>
<td>Michael Alosco</td>
</tr>
<tr>
<td>Emory University</td>
<td>BB/CC</td>
<td>Felicia Goldstein</td>
<td></td>
</tr>
<tr>
<td>Indiana University</td>
<td>BB/CC</td>
<td>Shannon Risacher</td>
<td>Andrew Saykin, Liana Apostolova</td>
</tr>
<tr>
<td>Johns Hopkins University</td>
<td>BB/CC</td>
<td>Corinne Pettigrew</td>
<td>Carolyn Zhu, Judith Neugroschl</td>
</tr>
<tr>
<td>Mount Sinai School of Medicine</td>
<td>BB/CC</td>
<td>Mary Sano</td>
<td>Karyn Marsh</td>
</tr>
<tr>
<td>New York University</td>
<td>BB/CC</td>
<td>Thomas Wisniewski, Joshua Chodosh</td>
<td>Randall Woltjer, Raina Croff</td>
</tr>
<tr>
<td>Oregon Health & Science University</td>
<td>BB/CC</td>
<td>Aimee Pierce</td>
<td></td>
</tr>
<tr>
<td>Rush University</td>
<td>BB Only</td>
<td>Melissa Lamar</td>
<td>David Bennett, Lisa Barnes</td>
</tr>
<tr>
<td>Stanford University</td>
<td>BB/CC</td>
<td>Victor Henderson</td>
<td>Patricia Rodriguez Espinosa</td>
</tr>
<tr>
<td>UC–Davis</td>
<td>BB/CC</td>
<td>Oanh Meyer</td>
<td>Rachel Whitmer, Sarah Farias</td>
</tr>
<tr>
<td>UC–Irvine</td>
<td>BB/CC</td>
<td>David Sultzer</td>
<td></td>
</tr>
<tr>
<td>UC–San Diego</td>
<td>BB/CC</td>
<td>Robert Rissman</td>
<td>James Brewer</td>
</tr>
<tr>
<td>UC–San Francisco</td>
<td>BB/CC</td>
<td>Sergio Lanata</td>
<td></td>
</tr>
<tr>
<td>University of Kansas</td>
<td>BB/CC</td>
<td>Jonathan Mahnken</td>
<td>Jill Morris, Rebecca Lepping</td>
</tr>
<tr>
<td>University of Kentucky</td>
<td>BB Only</td>
<td>Erin Abner</td>
<td>Anna Kucharska-Newton</td>
</tr>
<tr>
<td>University of Michigan</td>
<td>BB/CC</td>
<td>Henry L. Paulson</td>
<td>Kelly Bakulski</td>
</tr>
<tr>
<td>University of Pittsburgh</td>
<td>BB/CC</td>
<td>Jennifer Lingler</td>
<td>Julia Kofler, Anthony Fabio</td>
</tr>
<tr>
<td>Wake Forest University</td>
<td>BB/CC</td>
<td>Suzanne Craft, Trey Bateman</td>
<td>Samuel Lockhart</td>
</tr>
<tr>
<td>Washington University in St. Louis</td>
<td>BB Only</td>
<td>Cyrus A. Raji</td>
<td>Richard Perrin</td>
</tr>
<tr>
<td>Yale University</td>
<td>BB/CC</td>
<td>Carmen Carrión</td>
<td></td>
</tr>
</tbody>
</table>
Robert Golden, MD
Jon Audhya, PhD
Rick Moss, PhD

NIA Leadership, Program Officers and Staff

And many, many others . . .

Funding
NIA R01 AG070883 (Kind PI; Bendlin MPI)
NIA supplement 3 R01 AG070883-02 (Pis: Kind/Bendlin)
NIA RF1AG057784 (Kind PI; Bendlin MPI)
NIMHD R01MD010243-01 (Kind PI)
NIA F31AG062116 (PI: Hunt)
NIA P30AG062715 (Asthana PI)
NIA 1P30-AG062429-01 (Brewer PI)
NIA R01 AG077628 (Grill PI; Gillen/Kind MPI)

The NACC database is funded by NIA/NIH Grant U24 AG072122. Data are contributed by the NIA-funded ADRCs: P30 AG062429 (PI James Brewer, MD, PhD), P30 AG066468 (PI Oscar Lopez, MD), P30 AG062421 (PI Bradley Hyman, MD, PhD), P30 AG066509 (PI Thomas Grabowski, MD), P30 AG066514 (PI Mary Sano, PhD), P30 AG066530 (PI Helena Chui, MD), P30 AG066507 (PI Marilyn Albert, PhD), P30 AG066444 (PI John Morris, MD), P30 AG066518 (PI Jeffrey Kaye, MD), P30 AG066512 (PI Thomas Wisniewski, MD), P30 AG066462 (PI Scott Small, MD), P30 AG072979 (PI David Wolk, MD), P30 AG072972 (PI Charles DeCarli, MD), P30 AG072976 (PI Andrew Saykin, PhD), P30 AG072975 (PI David Bennett, MD), P30 AG072978 (PI Neil Kowall, MD), P30 AG072977 (PI Robert Vassar, PhD), P30 AG066519 (PI Frank LaFerla, PhD), P30 AG062677 (PI Ronald Petersen, MD, PhD), P30 AG079280 (PI Eric Reiman, MD), P30 AG062422 (PI Gil Robinstein, MD), P30 AG066511 (PI Allan Levey, MD, PhD), P30 AG072946 (PI Linda Van Eldik, PhD), P30 AG062715 (PI Sanjay Asthana, MD, PhD), P30 AG072973 (PI Russell Swerdlow, MD), P30 AG066506 (PI Todd Golde, MD, PhD), P30 AG066508 (PI Stephen Strittmatter, MD, PhD), P30 AG066515 (PI Victor Henderson, MD, MS), P30 AG072947 (PI Suzanne Craft, PhD), P30 AG072931 (PI Henry Paulson, MD, PhD), P30 AG066546 (PI Sudha Seshadri, MD), P20 AG068024 (PI Erik Roberson, MD, PhD), P20 AG068053 (PI Justin Miller, PhD), P20 AG068077 (PI Gary Rosenberg, MD), P20 AG068082 (PI Angela Jefferson, PhD), P30 AG072958 (PI Heather Whitson, MD), P30 AG072959 (PI James Leverenz, MD).