

Jamie N. Justice, Ph.D. Assistant Professor, Internal Medicine, Gerontology and Geriatrics Sticht Center on Healthy Aging and Alzheimer's Prevention (CHAAP) Wake Forest School of Medicine

Wake Forest[™] School of Medicine

AFAR's Beeson Meeting Nov 19, 2021 Wake Forest Baptist Medical Center

Conflicts to Disclose: None

Funding sources:

- American Federation of Aging Research & Glenn Foundation (TAME)
- National Institutes of Health

No biomarker is perfect, but some are useful.

Embrace feasible biomarker plans that include:

- Targeted biomarker panels and multivariable composites
- Data-intensive platforms: "omics"
- Biobanking: longitudinal collections

Geroscience and Interventions

Age-Related Disease Trials & Prevention Trials

Geroscience and Interventions

Age-Related Disease Trials & Prevention Trials

Example Case at Wake Forest: I-CARE

Infrastructure for Cancer and Aging Research Engagement

Heidi Diana Klepin, MD Professor, Hematology and Oncology **Research Interests Geriatric Oncology 2013 Beeson Scholar!**

Example Case at Wake Forest: I-CARE

Infrastructure for Cancer and Aging Research Engagement

Newly funded grant at our WF Comprehensive Cancer Center (PI, Klepin)

A key gap: lack of characterization of the phenotypic and biologic heterogeneity of older adults with cancer.

Innovation: A new tool, an electronic record frailty index (eFI), can capture routine measures in EHR that is predictive of hospitalization and survival in an older adult primary care population.

Overall Goals:

- 1) Develop and evaluate a novel cancer-adapted eFI (eFI-cancer), and
- 2) Correlate with geriatric assessment measures, patient reported outcomes, and biomarkers of aging.

Example Case at Wake Forest: I-CARE

Infrastructure for Cancer and Aging Research Engagement

Overall Goals: (PI, Klepin)

- 1) Develop and evaluate a novel cancer-adapted eFI, and
- 2) Correlate with geriatric assessment measures, patient reported outcomes, and biomarkers of aging.

Heidi: "Jamie – What biomarker should we use to make it 'geroscience-y'?"

- Unstated #1) use only blood or biofluids collected during clinical visit.
- **Unstated #2)** we have almost no budget for special processing, live cells, or data-intensive measures. So biomarkers must be cheap or use stored blood so that we can apply for get a second grant to pay for more measurements.
- **Unstated #3)** Collaborate! Team science approach is essential.

No biomarker is perfect, but some are useful.

Embrace feasible biomarker plans that include:

- Targeted biomarker panels and multivariable composites
- Data-intensive platforms: "omics"
- Biobanking: longitudinal collections

Geroscience: Biomarkers and Evaluation Continuum From Biologic Mechanisms to Age-Related Disease

Biomarkers

Time		-
Expense		-
Salience		

Kritchevsky, Justice. JGMS (2020) 75(1): 99–101.

What is a Biomarker?

Objective measurement that reflects an interaction between a biologic system and a potential hazard.

- 1) Indicator of normal or pathogenic process
- 2) Measure response to an intervention

Wake Forest Baptist Medical Center

Biomarkers of biological pillars or hallmarks of aging Challenges: validation, access to tissues, instruments for measurement

Received: 9 July 2019	Revised: 22 October 2019	Accepted: 27 October 2019	
DOI: 10.1111/acel.1308	80		
REVIEW		Aging Cell 🛞 WIL	.EY
Measurin	g biological a	aging in humans: A quest	
		lez-Freire ¹ Elisa Fabbri ^{1,2} Eleanor Simonsick ¹ ore ¹ Shabnam Salimi ³ Felipe Sierra ⁴ Rafael de Cabo	1

The Journal of Frailty & Aging Volume 10, Number 3, 2021	© The Author(s)
	SPECIAL ARTICLE
	FYING BIOMARKERS FOR BIOLOGICAL AGE: ROSCIENCE AND THE ICFSR TASK FORCE
N.K. LEBRASSEUR ¹	R. DE CABO ² , R. FIELDING ³ , L. FERRUCCI ⁴ , L. RODRIGUEZ-MANAS ⁵ , J. <u>VI</u> ÑA ⁶ , B. VELLAS ⁷

Biomarkers of biological pillars or hallmarks of aging

What can be measured using sample from blood draw?

Biological Aging	Measured using blood draw samples?
Genomic Instability	
Telomere Attrition	
Epigenetic	
Proteostasis	
Nutrient Sensing	
Mitochondrial	ready to be overwhelmed?
Cellular Senescence	
Stem Cell Exhaustion	
Cell Communication	
Immune Aging	
Others: damage accum., transcriptome, etc.	

Biomarkers of biological pillars or hallmarks of aging

What can be measured using sample from blood draw?

Biological Aging	Measured using blood draw?	Stored or Fresh?
Genomic Instability	Whole Blood: Single-cell/ NGS, SNP analysis PBMC: DNA repair	Stored: DNA, WB, PBMC
Telomere Attrition	Whole Blood: telomere length PBMC: DNA damage response	Stored: DNA, WB, PBMC
Epigenetic	Whole Blood: DNA methylation PBMC: Histone acetylation	Stored: DNA, WB, PBMC
Proteostasis	Blood : autophagy markers, proteomics PBMC : autophagic flux (e.g. protein LC3B-II)	Stored: plasma, serum, cells
Nutrient Sensing	Blood : insulin, IGF-1 signaling PBMC : AMPK activation (phospho-Thr172), mTOR signaling	Stored: plasma, serum, cells Live Cells: AMPK activation
Mitochondrial	Blood : NAD+ metabolites, sirtuins, oxidative stress PBMC : mitochondrial respiration, mtDNA	Stored: WB, plasma, serum Fresh: mito resp.
Cellular Senescence	Blood : senescence associated secretory proteins PBMC subpops: expression of p16INK4a, p21, p53	Stored: plasma, serum, and isolated cell subpops
Stem Cell Exhaustion	PBMC: proliferative capacity	Fresh: Live cells (in vitro)
Cell Communication	Blood : chemokines, growth factors (shared with SASP)?, endocrine / hormone, etc. (catch-all?)	Stored: plasma, serum, cells
Immune Aging	Blood: cytokines, chemokines – (CXCL9) PBMC: immune age, iAge (see Sayed et al Nat Aging 2021)	Stored: plasma, serum, and isolated cell subpops Fresh: cells
Others: Damage, transcriptome, etc.	Blood: cell free DNA (cfDNA), exosomes, noncoding RNA PBMC : transcriptome (bulk, single-cell /nuc. RNAseq)	Stored: blood, cells (with RNA stabilizers)

NOTE: technology always improving!

No biomarker is perfect, but some are useful.

Biomarkers & Translational Geroscience:

I've collected blood... now what?

A priori literature-justified blood-based biomarkers: expert opinion, experimental evidence, and epidemiologic literature

Pre-Specified Biomarkers

Justice et al. GeroScience 2018

Primary Finding: Paucity of blood-based biomarkers meet basic criteria in literature

Blood-based	markers of biological & physiological aging processes	
Biomarker	Underlying Biological Process & Role	
IL-6, TNFR-I / II	Inflammation & Intercellular Signaling	
GDF15	Stress Response & Mitochondria	In
Cystatin-C	Kidney Aging	dex
NT-proBNP	Cardiovascular Health	

Exciting? No. **Useful?** Yes.

Justice et al. GeroScience 2018

Blood-based markers of biological & physiological aging processes

Justice et al. Geroscience. In Review

AUTIVIES AUT CTIVIN A Chronologic age • Severe aortic stenosis >750

160

140

120

100 Fold Change

80

60

40

20

Ovarian cancer

Panel of 'SASP' Factors:

Test associations with

clinical data across:

- GDF15
 - TNFR superfamily 6 (FAS)
 - TNF receptor 1 (TNFR1)
- Osteopontin (OPN)
- **ACTIVIN A**
- Chemokine (C-C motif) ligand 3 (CCL3)
- IL-15

Markers of Hallmarks / Pillars: cell senescence

Example: identifying circulating markers

Measure secreted factors Induce senescence \rightarrow

Senescence Associated Secretory Phenotype.

A PROTEOMIC ATLAS OF SENESCENCE-ASSOCIATED SECRETOMES FOR AGING BIOMARKER DEVELOPMENT

Nathan Basisty¹, Abhijit Kale¹, Ok Hee Jeon¹, Chisaka Kuehnemann¹, Therese Payne¹, Chirag Rao¹, Anja Holtz¹, Samah Shah¹, Vagisha Sharma², Luigi Ferrucci³, Judith Campisi^{1, 4}, Birgit Schilling^{**1}

SASP Atlas

GFBP5	
GFBP7	
GFBP2	
GFBP3	
GFBP4	
CXCL1	
CXCL8	
HMGB1	
MMP1	
MMP2	
AMB1	
TIMP1	
TIMP2	
	/e
Download CSV	

http://www.saspatlas.com/

Biomarkers & Translational Geroscience Biomarker discovery

651 of 1301 proteins associated with chronological age in InCHIANTI

Tanaka *et al* eLife (2020)

REVIEW

Open Access

Epigenetic clocks discussed in this review. EAA: epigenetic age acceleration

adapted from Topart, Werner, Arimondo. Clin Epigenet 12, 97 (2020).

- Use clinical labs and routine measures.
- Newest most exciting models include longitudinal assessments.

Specimen and Data Repository: Include other samples, longitudinal assessment!

No biomarker is perfect, but some are useful.

Embrace feasible biomarker plans that include:

- Targeted biomarker panels and multivariable composites
- Data-intensive platforms: "omics"
- Biobanking: longitudinal collections

Thank you!

Wake Forest School of Medicine

Steve Kritchevsky* Barb Nicklas* Jingzhong Ding Mike Miller Dalane Kitzman Mark Espeland Judy Bahnson **Dan Beavers Denise Houston**

Kylie Kavanagh Ellen Quillen Miranda Orr

Biogerontology Lab

Heather Gregory Rae Ling-Lee **Jingfang Liu** John Stone Shawn Lane Nick Edenhoffer

I-CARE

Janet Tooze

Nick Pajewski

Umit Topaloglu

Katherine Pleasant

Sticht Center Admin

Lynn Wagner

Kim Kennedy

Nora Shively

Laura Hayworth

AFAR; Glenn Foundation; NIH: K01 AG059837-01 (*mentors), WFSM OAIC - P30 AG021332; UTHSCSA OAIC P30 AG044271 GeroscienceNet: R24AG044396, TGNet: R33AG061456

american federation for aging research

SOMMA-AT Lauren Sparks Heidi Klepin (PI) Erin Kershaw TAME Kate Callahan

George Kuchel Nir Barzilai Vanita Aroda Steve Kritchevsky Mark Espeland Jill Crandall

TAME-BIO Anne Newman **Barbara Methe** Morgan Levine Jessica Yeh Luigi Ferrucci Michael Pollak

Featured Artwork: **Eudes** Correia **Muriel Vanhove**

Eric Yi Lin

School of Medicine

🕦 Wake Forest

Eric Yi Lin