Biomarkers & Translational Geroscience: I’ve collected blood... now what?

Jamie N. Justice, Ph.D.
Assistant Professor, Internal Medicine, Gerontology and Geriatrics
Sticht Center on Healthy Aging and Alzheimer’s Prevention (CHAAP)
Wake Forest School of Medicine

AFAR’s Beeson Meeting
Nov 19, 2021
Conflicts to Disclose:
None

Funding sources:
- American Federation of Aging Research & Glenn Foundation (TAME)
- National Institutes of Health
No biomarker is perfect, but some are useful.

Embrace feasible biomarker plans that include:

• Targeted biomarker panels and multivariable composites
• Data-intensive platforms: “omics”
• Biobanking: longitudinal collections
Geroscience and Interventions
Age-Related Disease Trials & Prevention Trials

Treatment
Prevention

Aged, ‘At-Risk’

Aging Outcome

FDA Indication:
• Functions
• Feels
• Survives

Respiratory Illness
Knee OA
Alzheimer's Disease
Cancer
COPD
Hip / Knee Surgery
Met.S.
MCI / Dementias
Discharge/Readmission
CVD
IPF
HSCT

Murielle Vanhove
Biomarkers create a common currency across studies
Example Case at Wake Forest: I-CARE
Infrastructure for Cancer and Aging Research Engagement

Heidi Diana Klepin, MD
Professor, Hematology and Oncology
Research Interests
Geriatric Oncology

2013 Beeson Scholar!
Example Case at Wake Forest: I-CARE
Infrastructure for Cancer and Aging Research Engagement

Newly funded grant at our WF Comprehensive Cancer Center (PI, Klepin)

A key gap: lack of characterization of the phenotypic and biologic heterogeneity of older adults with cancer.

Innovation: A new tool, an electronic record frailty index (eFI), can capture routine measures in EHR that is predictive of hospitalization and survival in an older adult primary care population.

Overall Goals:
1) Develop and evaluate a novel cancer-adapted eFI (eFI-cancer), and
2) Correlate with geriatric assessment measures, patient reported outcomes, and biomarkers of aging.
Example Case at Wake Forest: I-CARE
Infrastructure for Cancer and Aging Research Engagement

Overall Goals: (PI, Klepin)
1) Develop and evaluate a novel cancer-adapted eFI, and
2) Correlate with geriatric assessment measures, patient reported outcomes, and biomarkers of aging.

Heidi: “Jamie – What biomarker should we use to make it ‘geroscience-y’?”

• **Unstated #1**) use only blood or biofluids collected during clinical visit.

• **Unstated #2**) we have almost no budget for special processing, live cells, or data-intensive measures. So biomarkers must be cheap or use stored blood so that we can apply for get a second grant to pay for more measurements.

• **Unstated #3**) Collaborate! Team science approach is essential.
No biomarker is perfect, but some are useful.

Embrace feasible biomarker plans that include:

• Targeted biomarker panels and multivariable composites
• Data-intensive platforms: “omics”
• Biobanking: longitudinal collections
Geroscience: Biomarkers and Evaluation Continuum
From Biologic Mechanisms to Age-Related Disease

Biomarkers

- Molecular-Level Changes
- Changes in Mortality & Disease Assoc. Biomarkers
- Retard Emergence Of Age-Related Disease
- Lower Mortality Rate

- Change in Cellular Physiology
- Slow Age-Related Physiologic Degeneration
- Delay Frailty & Geriatric Syndromes
- Extend Life Span

Time
Expense
Salience

What is a Biomarker?

Objective measurement that reflects an interaction between a biologic system and a potential hazard.

1) Indicator of normal or pathogenic process
2) Measure response to an intervention

Reflects Underlying Biology

Biomarker Change

→ Outcome Change
Biomarkers of biological pillars or hallmarks of aging
Challenges: validation, access to tissues, instruments for measurement

Measuring biological aging in humans: A quest

Luigi Ferrucci¹ | Marta Gonzalez-Freire¹ | Elisa Fabbri¹,² | Eleanor Simonsick¹ |
Toshiko Tanaka¹ | Zenobia Moore¹ | Shabnam Salimi² | Felipe Sierra⁴ | Rafael de Cabo¹

IDENTIFYING BIOMARKERS FOR BIOLOGICAL AGE:
GEROSCIENCE AND THE ICFSR TASK FORCE

N.K. LEBRASSEUR¹, R. DE CABO², R. FIELDING³, L. FERRUCCI⁴, L. RODRIGUEZ-MANAS⁵,
J. VIÑA⁶, B. VELLAS⁷
Biomarkers of biological pillars or hallmarks of aging

What can be measured using sample from blood draw?

<table>
<thead>
<tr>
<th>Biological Pillars or Hallmarks of Aging</th>
<th>Measured using blood draw samples?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genomic Instability</td>
<td></td>
</tr>
<tr>
<td>Telomere Attrition</td>
<td></td>
</tr>
<tr>
<td>Epigenetic</td>
<td></td>
</tr>
<tr>
<td>Proteostasis</td>
<td></td>
</tr>
<tr>
<td>Nutrient Sensing</td>
<td></td>
</tr>
<tr>
<td>Mitochondrial</td>
<td></td>
</tr>
<tr>
<td>Cellular Senescence</td>
<td></td>
</tr>
<tr>
<td>Stem Cell Exhaustion</td>
<td></td>
</tr>
<tr>
<td>Cell Communication</td>
<td></td>
</tr>
<tr>
<td>Immune Aging</td>
<td></td>
</tr>
<tr>
<td>Others: damage accum., transcriptome, etc.</td>
<td></td>
</tr>
</tbody>
</table>

ready to be overwhelmed?
<table>
<thead>
<tr>
<th>Biological Aging</th>
<th>Measured using blood draw?</th>
<th>Stored or Fresh?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genomic Instability</td>
<td>Whole Blood: Single-cell/NGS, SNP analysis
PBMC: DNA repair</td>
<td>Stored: DNA, WB, PBMC</td>
</tr>
<tr>
<td>Telomere Attrition</td>
<td>Whole Blood: telomere length
PBMC: DNA damage response</td>
<td>Stored: DNA, WB, PBMC</td>
</tr>
<tr>
<td>Epigenetic</td>
<td>Whole Blood: DNA methylation
PBMC: Histone acetylation</td>
<td>Stored: DNA, WB, PBMC</td>
</tr>
<tr>
<td>Proteostasis</td>
<td>Blood: autophagy markers, proteomics
PBMC: autophagic flux (e.g. protein LC3B-II)</td>
<td>Stored: plasma, serum, cells</td>
</tr>
<tr>
<td>Nutrient Sensing</td>
<td>Blood: insulin, IGF-1 signaling
PBMC: AMPK activation (phospho-Thr172), mTOR signaling</td>
<td>Stored: plasma, serum, cells
Live Cells: AMPK activation</td>
</tr>
<tr>
<td>Mitochondrial</td>
<td>Blood: NAD+ metabolites, sirtuins, oxidative stress
PBMC: mitochondrial respiration, mtDNA</td>
<td>Stored: WB, plasma, serum
Fresh: mito resp.</td>
</tr>
<tr>
<td>Cellular Senescence</td>
<td>Blood: senescence associated secretory proteins
PBMC subpops: expression of p16INK4a, p21, p53</td>
<td>Stored: plasma, serum, and isolated cell subpops</td>
</tr>
<tr>
<td>Stem Cell Exhaustion</td>
<td>PBMC: proliferative capacity</td>
<td>Fresh: Live cells (in vitro)</td>
</tr>
<tr>
<td>Cell Communication</td>
<td>Blood: chemokines, growth factors (shared with SASP)?, endocrine / hormone, etc. (catch-all?)</td>
<td>Stored: plasma, serum, cells</td>
</tr>
<tr>
<td>Immune Aging</td>
<td>Blood: cytokines, chemokines – (CXCL9)
PBMC: immune age, iAge (see Sayed et al Nat Aging 2021)</td>
<td>Stored: plasma, serum, and isolated cell subpops
Fresh: cells</td>
</tr>
<tr>
<td>Others: Damage, transcriptome, etc.</td>
<td>Blood: cell free DNA (cfDNA), exosomes, noncoding RNA
PBMC: transcriptome (bulk, single-cell /nuc. RNAseq)</td>
<td>Stored: blood, cells (with RNA stabilizers)</td>
</tr>
</tbody>
</table>

NOTE: technology always improving!
No biomarker is perfect, but some are useful.
Biomarkers & Translational Geroscience: I’ve collected blood… now what?

Targeted Biomarkers:
Common Use or Hallmarks / Pillars

Molecular-Level Biomarkers

Deficit Accumulation Index
(or KDM Biological Age, or Pace of Aging)

AI-Based Clocks

Resiliency Markers
A priori literature-justified blood-based biomarkers: expert opinion, experimental evidence, and epidemiologic literature

Identification

Biomarkers Workgroup → **Comprehensive Reviews**

258 Candidate Biomarkers Identified

Candidate Biomarkers Ranked
- Feasibility, Frequency of use, Expert knowledge

Prioritization

Highest Ranked, Meet Biomarker Framework

1. Represent biologic aging processes?
2. Robust across datasets and populations?
3. Robust & consistent association with risk of clinical or functional trial endpoints and death?
4. Responsive to intervention?

Selection

Pre-Specified Biomarkers

Justice et al. GeroScience 2018
Primary Finding: Paucity of blood-based biomarkers meet basic criteria in literature

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Underlying Biological Process & Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6, TNFR-I / II</td>
<td>Inflammation & Intercellular Signaling</td>
</tr>
<tr>
<td>GDF15</td>
<td>Stress Response & Mitochondria</td>
</tr>
<tr>
<td>Cystatin-C</td>
<td>Kidney Aging</td>
</tr>
<tr>
<td>NT-proBNP</td>
<td>Cardiovascular Health</td>
</tr>
</tbody>
</table>

Justice et al. GeroScience 2018
Blood-based markers of biological & physiological aging processes

Ancillary to SECRET Trial (2x2 Factorial Trial)
Aged 60+ yrs, Obese, HFpEF

Exercise
Caloric Restriction
5-Months
EX + CR
Control

Biomarker Levels → Scored by Quintile Cutpoints → Sum Quintiles → Biomarker Index

Caloric Restriction
Treatment Group
- CR
- Not CR

Ex 14.06 ± 0.58
Not EX 13.95 ± 0.58

Exercise
Treatment Group
- EX
- Not EX

CR 14.17 ± 0.58
Not CR 13.79 ± 0.58

Justice et al. Geroscience. In Review
Markers of Hallmarks / Pillars: cell senescence
Example: identifying circulating markers

Induce senescence → Measure secreted factors → Test associations with clinical data across:

- Chronologic age
- Severe aortic stenosis
- Ovarian cancer

Panel of ‘SASP’ Factors:
- GDF15
- TNFR superfamily 6 (FAS)
- TNF receptor 1 (TNFR1)
- Osteopontin (OPN)
- ACTIVIN A
- Chemokine (C-C motif) ligand 3 (CCL3)
- IL-15

Biomarkers & Translational Geroscience: I’ve collected blood… now what?

Targeted Biomarkers: Common Use or Hallmarks / Pillars

Molecular-Level Biomarkers

Deficit Accumulation Index (or KDM Biological Age, or Pace of Aging)
A PROTEOMIC ATLAS OF SENESCEENCE-ASSOCIATED SECRETOMES FOR AGING BIOMARKER DEVELOPMENT

Nathan Basisty¹, Abhijit Kale¹, Ok Hee Jeon¹, Chisaka Kuehnemann¹, Therese Payne¹, Chirag Rao¹, Anja Holtz¹, Samah Shah¹, Vagisha Sharma², Luigi Ferrucci³, Judith Campisi¹,⁴, Birgit Schilling**¹

SASP Atlas

http://www.saspatlas.com/
651 of 1301 proteins associated with chronological age in InCHIANTI

Biomarker discovery

Tanaka et al eLife (2020)
Wandering along the epigenetic timeline

- **2013**: Horvath's pan tissue clock
 - 353 CpGs
 - Tissue independent
 - Measures aging rate

- **2018**: Horvath's skin and blood clock
 - 391 CpGs
 - Tissue independent
 - Measures EAA in ex-vivo studies

- **2019**: PhenoAge by Levine
 - 513 CpGs
 - Tissue independent
 - Predicts phenotypic age: mortality risks

- **2019**: GrimAge by Horvath
 - 1030 CpGs
 - Tissue independent
 - Predicts lifespan and healthspan

Epigenetic clocks discussed in this review. EAA: epigenetic age acceleration

Targeted Biomarkers: Common Use or Hallmarks / Pillars

Molecular-Level Biomarkers

Deficit Accumulation Index
(or KDM Biological Age, or Pace of Aging)

- Use clinical labs and routine measures.
- Newest - most exciting models - include longitudinal assessments.
Biomarkers & Translational Geroscience: I’ve collected blood… now what?

- Biological Age
- Targeted Biomarkers: Common Use or Hallmarks / Pillars
- Molecular-Level Biomarkers
- Deficit Accumulation Index (or KDM Biological Age, or Pace of Aging)
- Other: Imaging, AI-Based Approaches, Resilience, etc

Multidimension / Aggregate

Specimen and Data Repository: Include other samples, longitudinal assessment!
Biomarkers & Translational Geroscience: I’ve collected blood… now what?

No biomarker is perfect, but some are useful.

Embrace feasible biomarker plans that include:

• Targeted biomarker panels and multivariable composites
• Data-intensive platforms: “omics”
• Biobanking: longitudinal collections
Thank you!

Wake Forest School of Medicine
Steve Kritchevsky*
Barb Nicklas*
Jingzhong Ding
Mike Miller
Dalane Kitzman
Mark Espeland
Judy Bahnson
Dan Beavers
Denise Houston

Kylie Kavanagh
Ellen Quillen
Miranda Orr

Biogerontology Lab
Heather Gregory
Rae Ling-Lee
Jingfang Liu
John Stone
Shawn Lane
Nick Edenhoffer

AFAR; Glenn Foundation; NIH: K01 AG059837-01 (*mentors), WFSM OAIC - P30 AG021332; UTHSCSA OAIC P30 AG044271
GeroscienceNet: R24AG044396, TGNet: R33AG061456

NIH
NIA

I-CARE
Heidi Klepin (PI)
Janet Tooze
Kate Callahan
Nick Pajewski
Umit Topaloglu
Lynn Wagner
Katherine Pleasant

SOMMA-AT
Lauren Sparks
Erin Kershaw

TAME
George Kuchel
Nir Barzilai
Vanita Aroda
Steve Kritchevsky
Mark Espeland
Jill Crandall

Sticht Center Admin
Kim Kennedy
Laura Hayworth
Katherine Pleasant

TAME-BIO
Anne Newman
Barbara Methe
Morgan Levine
Jessica Yeh
Luigi Ferrucci
Michael Pollak

Featured Artwork:
Eudes Correia
Muriel Vanhove
Eric Yi Lin